Neutrinos for Peace or Applied Antineutrino Physics

History of the Neutrino Conference September 5-7 2018, Paris France

Lawrence Livermore National Laboratory

Adam Bernstein Rare Event Detection Group Leader, Physical and Life Sciences Directorate

LLNL-PRES-750563This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Foreshadowing and a look back..

"I don't say that the neutrino is going to be a practical thing, but it has been a time-honored pattern that science leads, and then technology comes along, and then, put together, these things make an enormous difference in how we live."

Fredrick Reines, winner of the Nobel Prize and co-discoverer of the neutrino NYT interview, 1997

http://library.lanl.gov/cgi-bin/getfile?00326606.pdf

International Conference on

History of the Veutrino

September 5-7, 2018 1930 - 2018

A practical thing: near-field reactor monitoring

- Monitor reactor operational status, power and fuel consumption and composition
- 'Near': less than 1 km, typically 10-100 meters access granted by operators
- 'High' statistics: a few thousand events per day per ton sufficient to populate a spectrur
- Reactor power > ~20 MWt, but main focus has been on > 1000 MWt

<u>Rovno</u> and numerous other detector provided detector technology even with null oscillation results

The origin of this idea: L.A. Mikaelyan – Neutrino '77 conference, Baksan

3. I want to talk about the development of the new technique of the remote reactor diagnostics by the neutrino radiation. Due to the novelty of the problem the consideration naturally will be incomplete and limited by two questions only:

- determination of the reactor power production and in prospect

- determination of the dynamics of the fissing isotopes burning-out and accumulation (mainly ²³⁵U and ²³⁹Pu).

The principle promises of the proposed technique seem to be the remote analysis and fixing the plutonium accumulation immediately in the place of its production. This technique (if developed successfully) will be sufficiently important from the point of view of the control on the leakage of fissing materials and on the non-proliferation of nuclear weapons, and also for the economics of nuclear fuel recycling. More detail consideration of these problems on this conference seems to be irrelevant.

R&D Timeline for Near-field Monitoring

1980s - the remarkable deployment at Rovno

International Conference on History of the Aventrino September 5-7, 2018 1930 - 2018

The antineutrino rate measured over months and years) tracks power and fissile inventory "burnup effect"

2 months of data show reactor power/operational status tracking 2-3% precision – not so much worse than operator's own estimates

L. A. Mikaeiyan, "Neutrino laboratory in the atomic plant," in: Proceedings of the International Conference "Neutrino 77," Vol. 2, Nauka, Moscow (1978), pp. 383-385.

A. A. Borovoi and L. A. Mikaelyan, "Possibilities of practical applications of neutrinos," At. Energ., 44, No. 6, 508-511 (1978).

V. A. Korovkin, S. A. Kodanev, A. D. Yarichin, et al., "Measurement of nuclear fuel burnup in a reactor according to neutrino emission," At. Energ., 56, No. 4, 214-218 (1984).

V. A. Korovkin, S. A. Kodanev, N. S. Panashchenko, et al., "Measurement of power generation of a power reactor by the method of neutrino detection," At. I~nerg., 65, No. 3, 169-173 (1988).

Yu. V. Klimov, V. I. Kopeikin, L. A. Mika~Iyan,, K. V. Ozerov, and V. V. Sinev, "Neutrino Method Remote Measurement of Reactor Power and Power Output, Atomic

Energy, Vol. 76, No. 2, 1994

International Conference on History of the Veutrino September 5-7, 2018 1930 - 2018

Antineutrino spectral evolution at measured at Rovno

Spectral information increases independence from inputs (daily power levels) provided by the reactor operator

Plot shows the ratio of energy spectra from beginning and the end of the reactor cycle

Uranium hardens the spectrum, plutonium softens it

2. Ratio of the spectra of antineutrinos from the reactor at the beginning f_{vb} and f_{ve} of the period between reloadings.

Theoretical expectation with modern detectors: sensitive to a change of 7 kg of Pu at > 5 sigma for a 40 MWt reactor

P. Huber - arxiv:1403.7065

Recent history: Above-ground spectral sensitivity demonstrated in 2018

- Short baseline (5-10 m) oscillation searches demand near-surface operation – <u>as does monitoring</u>
- Highly segmented detectors, optimized shields permits above-ground rate and spectral measurements

PROSPECT PRECISION REACTOR OSCILLATION AND SPECTRUM EXPERIMENT

750 v/day with <1m overburden

PROSPECT, NuLAT, CHANDLER, Solide and others will simplify monitoring deployments

From Gary Feldman's talk ...

There is one other possible reason... History of the Neutrino 1930 - 2018

Introduction

- There are six past and present long-baseline (>200 km) accelerator neutrino experiments:
 - 1st generation general experiments: K2K and MINOS
 - Specialized experiments: OPERA and ICARUS
 - 2nd generation general experiments: T2K and NOvA
- Since studying oscillations is the only possible reason to put your detector 100s of km from the target, I will only cover that subject although these experiments have reported on other measurements.
- Since I have only been allotted an average of 4 minutes 10 seconds per experiment, with one exception, I will not discuss sterile neutrino searches.
 - a These experiments have found no evidence for sterile neutrinos. [1-7]

A somewhat less practical thing: 'far-field' or 'remote' reactor and explosion monitoring

- Discover, or exclude the existence of, operating reactors
- Confirm the nuclear nature and measure yield of nuclear explosions
- 'Far': more than 1 km, out to perhaps 1000 km ? varying degrees of access
- 'low' statistics: a few events per week month, year or explosion
- Reactor power ~50 MWt roughly generating 8 kg/one Significant Quantity per year
- Explosive yield difficult to achieve for less than 10 kton at reasonable standoff

Technology: Variations on KamLAND, Super-Kamiokande, Borexino and other large detectors used as models by a number of authors

Timeline for Far-field Monitoring

concepts

International Conference on

History of the Neutrino

September 5-7, 2018 1930 - 2018

Long-range reactor antineutrino detection is feasible now but only for relatively high power reactors and with a hard-to-scale technology

International Conference on History of the Veutrino September 5-7, 2018 1930 - 2018

Today's Water Cherenkov detectors are 50x larger than scintillator detectors, but can't distinguish neutrino from antineutrino

The Super-Kamiokande water Cherenkov detector

In 2009, LLNL and the Super-K collaboration both demonstrated water-based neutron detection using gadolinium as a trace additive – a natural extension from gd-scintillator

 $\overline{v_e} + p = e^+ + n$

- Gadolinium nucleus captures neutrons with high efficiency and creates an intense flash of Cherenkov light
- The signal is two flashes of Cherenkov light, close in time (~100 µsec) and location (~5 cm)—the "antineutrino heartbeat"
- Method reduces backgrounds by several orders of magnitude
- Gadolinium-doped Water Cherenkov technology offers path to 100–1000 kiloton antineutrino detectors
- First proposed by Bernstein in 2001
 Science & Global Security 9, 235 (2001)
- Experimental verification in 2009

LLNL: *NIMA* **607** (3), 21 (August 2009) Super-K: *Astroparticle Physics* **31**(4), 320–328 (May 2009)

The WATCHMAN demonstration

Main Project Objective:

Detect the ON/OFF power cycle of a single reactor:

- at 10-25 km standoff
- with a kiloton-scale Gd-H2O detector
- at 3 sigma confidence level
- <u>Choose water based on cost and scalability</u>

HARTLEPOOL REACTORS

<complex-block>

WATCHMAN: A WAter CHerenkov Monitor of Antineutrinos

Doping the water with gadolinium greatly increases sensitivity to inverse beta interactions of antineutrinos

$$\overline{\nu} + p \rightarrow e^+ + n$$

WATCHMAN detector at the Boulby mine

- 3500 tons, ~3000 photomultiplier tubes
- Water Cherenkov detector, doped with gadolinium

Other relevant activities worldwide

Detector	EGADS	WATCHMAN	Super-K-GD →Hyper-K	
Status	Ongoing	2018	Now	
Mass (ton)	200	5000	50,000 → 500,000	
Туре	Gd-WCD	Gd-WCD	Pure H2O or Gd-WCD	
Purpose	Measure background materials,energy threshold Too small to see reactor antineutrinos	Remotely detect reactor antineutrinos	Neutrino oscillations, proton decay, supernovae and maybe reactors and explosions	
	 EGADS (Evaluating Gadolinium's Action on Detector Systems) New dedicated, multi-million dollar test facility Kamioka mine (near SK) Will address all issues of the GADZOOKS! principle. Pre-treatment system Gd Removal System System Gd Removal System Gd Removal System	10.5 meter	Access Tanol Exercised Machinery Rom Exercised Machinery Rom Exercis	

Penultimate remarks...

- In the near-field (<100 m or so) it has been proven since</p> Rovno/1980's that antineutrino detectors can be used to determine issile inventories and power levels at reactors – easily deployable detectors are now approaching realization
- Far-field detection at hundreds of kilometers has already been demonstrated at one level by KamLAND - SuperK and WATCHMAN will demonstrate the scalable water-based technology
- In all cases, the technology has a natural overlap with detection for particle physics and the two communities should plan accordingly
- Apologies to the many ideas and people I didn't talk about coherent scatter, JUNO, fast phototubes and water-based scintillator...

International Conference on

History of the Veutrino 1930 - 2018

September 5-7, 2018

Another origin story for applied antineutrino physics – Moliere, Le Bourgeois Gentilhomme, Paris '70 (1670)

MONSIEUR JOURDAIN.— Par ma foi, il y a plus de quarante ans que je dis de la prose, sans que j'en susse rien; et je vous suis le plus obligé du monde, de m'avoir appris cela.

By my faith! For more than forty years I have been speaking prose without knowing anything about it, and I am much obliged to you for having taught me that.

International Conference on History of the Veutrino

eptember 5-7. 2018 1930 - 2018

Reactor antineutrino energy spectra, convolved with changing fission fractions, produce the "burnup effect"

Antineutrino rate and shape measurements reveal properties of the core

Comparison of relative nubar rates versus time for different core types

- 5 ton detector
- 3 GWt core
- 25 m standoff
- Sensitive to an 8% change in MOX composition in 150 days

arxiv:1612.00540

Comparison of two spectra with midpoints on cycle day 45 and day 315

- 5 ton detector
- 40 MWt core
- 17.5 m standoff
- Sensitive to a change of 7 kg of Pu at > 5 sigma

arxiv:1403.7065

The International Atomic Energy Agency - IAEA verifies nonproliferation in non-nuclear weapons states, and promotes nuclear power as part of the Treaty on the Nonproliferation of Nuclear Weapons

International Atomic Energy Agency

Current IAEA safeguards practice at reactors (220 worldwide) Reactor (1–1.5 years) Onsite Fuel Storage Reprocessing Waste Repository (months to years) (months) (forever)

- Check declarations
- Item accountancy
- Containment and surveillance

- Gross defect detection
- Item accountancy
- Containment and surveillance

- Check declarations
- Bulk accountancy

- Operators only declare fuel burn up and power history
- No direct Pu inventory measurement is made unless the fuel is reprocessed
- Can antineutrino detectors provide real-time inventory estimates?

Existing reactor backgrounds form the ultimate limit on discovery of unknown reactors

					Dwell times for different reactor backgrounds		
Reactor Thermal power (MWt)	Standoff (km)	Detector Mass (Megatons)	Confidence of detection	Total number of signal events	suppressed (1 evt./mo./MT)	Medium (300 evt./mo./MT)	High (2000 evt./mo./MT)
40	100	1	95%	~8	4 days	45 days	9 months
40	1000	2	68%	~9	7 months	-	-
100	1000	2	95%	~20	6 months	-	-

Global reactor antineutrino fluxes simulation courtesy Jocher/Learned/Usman NGA/UH *Science & Global Security, 18:127–192, 2010*

Large masses are essential for statistics

(More efficient configurations are possible)

Beyond ~100 km, directionality is essential to reject backgrounds

Supernova Neutrino Antineutrino Detectors

The AIT-WATCHMAN collaboration

32 collaborators9 Universities4 National Laboratories

Co-spokespersons: Adam Bernstein, LLNL Mark Vagins, UC Irvine/Tokyo University

AWE LLM • J.Burns • A • M • S	NL A. Bernstein <i>M</i> . Bergevin S. Dazeley	BNL • M. Yeh	STFC-Boulby • S. Paling	Penn Stat • D. Cowe	t e U. In	Iowa State U. • M. Wetstein	UC Berkeley • G. Orebi Gann
U. Hawaii • S. Dye • J. Learned	U. Michigan I. Jovanovic 	U. Pennsy • C. Maug	ylvania UC Da er • R. S	vis U voboda •	C Irvine M. Vagins	U. of S • M. M • N. Sp • L. Th	heffield alek ooner ompson

Site and configuration choices

	Option 1	Option 2
Reactor Location	Perry, Ohio, United States	Hartlepool, England, United Kingdom
Thermal Power (MWt)	1 x 3875	2 x 1500
Detector Location	Morton Salt/IMB mine Painesville, Ohio	Boulby underground science lab, Boulby, England
Standoff	~13 km	~25 km
Overburden (mwe)	~1500	~3000
Signal Events	110 per month	11 per month
Background Events	50 per month	20 per month

An Historical Artifact: J. Learned Concept for remote monitoring applications, circa 2007-8

Security Applications for Antineutrino Detectors

International Conference on History of the Aventrino September 5-7, 2018 1930 - 2018