what do we learn from the past for neutrino physics in the future? not much, however... a brief history of particle physics

prehistory with cosmic rays to ~ 1977:

experiment drives theory (with notable exceptions) with many serendipitous discoveries (the neutrino, the muon, strange particles, P and CP violation, J/psi, upsilon...

era of the Standard Model\*:

most successful theory ever constructed, precision tests we find what we look for, and no more\*\*...

\* first textbooks on the Standard Model appeared in early 80's \*\* BSM: lepton universality violation in b-decay, g-2,...? a brief history of neutrino physics

the era of serendipitous discovery never happened we only found what we looked for and no more (with possible exceptions\*)

dedicated experiments found the neutrino discovery at a reactor the second neutrino with a dedicated accelerator beam atmospheric neutrinos in underground muon detectors solar neutrinos in radiochemical experiment oscillations with SuperK a supernova with Kamioka and IMB

cosmic neutrinos with IceCube

\*sterile neutrinos, < 100 TeV atmospheric neutrino excess in IceCube,...

### the neutrino is a coy mistress

by building dedicated precision and exploratory experiments we may find physics beyond the Standard Model whose existence in the neutrino sector is well motivated by the non-vanishing neutrino mass and the puzzling hierarchy of the neutrino and electron mass the future of neutrino physics is instrumentation and the future is bright:

precision: intense accelerator beams, short-baseline, DUNE, HyperK,... ORCA, neutron factories... neutrino factory?

exploration: double-beta decay, supernova detectors, short-baseline reactor beams, neutrino "telescopes", ...

results to be discussed in the next History of Neutrino Physics organized by Daniel and Michel.



Experiments:  $L_{\rm osc} = 2\pi \frac{E}{\Delta m^2} \mid \Delta m_{\rm LSND}^2 = 1 eV^2$ 



eV sterile neutrino  $\rightarrow$  Earth MSW resonance for TeV neutrinos

In the **Earth** for sterile neutrino  $\Delta m^2 = O(1eV^2)$  the MSW effect happens when

$$E_{
u} = rac{\Delta m^2 \cos 2 heta}{2\sqrt{2}G_F N} \sim O(TeV)$$









### Thanks to:

#### MINOS, Opera



## neutrinos: the sun and the Earth

$$v_{1} = \left(\frac{v_{\mu} + v_{\tau}}{\sqrt{2}}\right) \cdot v_{2} = \sin \theta_{\odot} v_{e} + \cos \theta_{\odot} \left(\frac{v_{\mu} - v_{\tau}}{\sqrt{2}}\right)$$
$$v_{3} = -\cos \theta_{\odot} v_{e} + \sin \theta_{\odot} \left(\frac{v_{\mu} - v_{\tau}}{\sqrt{2}}\right)$$





|                   | $(0.97427 \pm 0.00015)$              | $0.22534 \pm 0.0065$               | $(3.51\pm 0.15)	imes 10^{-3}$ \      |
|-------------------|--------------------------------------|------------------------------------|--------------------------------------|
| $ V _{\rm CKM} =$ | $0.2252 \pm 0.00065$                 | $0.97344 \pm 0.00016$              | $(41.2^{+1.1}_{-5})	imes10^{-3}$     |
|                   | $(8.67^{+0.29}_{-0.31})	imes10^{-3}$ | $(40.4^{+1.1}_{-0.5})	imes10^{-3}$ | $0.999146^{+0.000021}_{-0.000046}$ / |

## why so different? main result: CP-violation

## PMNS

3σ

|      | $0.801 \rightarrow 0.845$ | $0.514 \rightarrow 0.580$ | 0.137  ightarrow 0.158    |
|------|---------------------------|---------------------------|---------------------------|
| U  = | 0.225  ightarrow 0.517    | $0.441 \rightarrow 0.699$ | $0.614 \rightarrow 0.793$ |
|      | $0.246 \rightarrow 0.529$ | $0.464 \rightarrow 0.713$ | $0.590 \rightarrow 0.776$ |





DeepCore: →map the first oscillation dip at 10x higher energy →new physics?

### IceCube/DeepCore



- 3 years of IceCube Deep Core data
   measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth
- Neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV

$$\Delta m_{32}^2 = 2.31^{+0.11}_{-0.13} \times 10^{-3} \text{eV}^2$$
$$\sin^2 \theta_{23} = 0.51^{+0.07}_{-0.09}$$



- Average energies
- FC: ~1 GeV , PC: ~10 GeV, UpMu:~ 100 GeV



#### two independent analyses

one for quality of events

one for statistics

both blind

|            |                               | Analysis A<br>GRECO                                                                                                                                                                                                                                                                     | Analysis B<br>DRAGON                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            |                               | "High statistics sample"                                                                                                                                                                                                                                                                | "High purity sample"                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Simulation | Neutrino Simulation           | Neutrino interactions / lepton generation: GENIE     Lepton propagation / photon generation: PROPOSAL & GEANT4     Photon propagation: CLSim (GPU-based software)     Noise addition     PMT response & readout elections                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|            | Muon Background<br>Simulation | <ul> <li>CORSIKA + MuonGun</li> <li>Uses H4a Cosmic Ray flux model to<br/>directly predict muon background. Run<br/>through standard simulation chain.</li> </ul>                                                                                                                       | CORSIKA + Data-Driven<br>• Any muon that would have made it to final<br>level had it not been for a hit in the<br>corridor region is considered a<br>background muon                                                                                                                                                                                                                                                                                                 |  |
|            | Goal                          | High signal acceptance<br>"High statistics sample"                                                                                                                                                                                                                                      | High signal purity<br>"High purity sample"                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Selection  | Trigger                       | At least 3 pairs of locally coincident DeepCore DOMs detect hits in a 2.5 microsecond time<br>window                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|            | Level 2 "Filter"              | Veto events with hits in "veto region" consistent with a muon travelling from there to interaction vertex at $v=c$                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|            | Level 3                       | Eliminates events with more than 7 hits in veto region, too many noise hits, too many hits in<br>outer region of DeepCore (i.e. not fully contained),                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|            | Other low-level cuts          | Removes events with too many non-isolated<br>hits in veto region and/or too few non-<br>isolated hits in DeepCore fiducial volume                                                                                                                                                       | Fast reconstruction to insure enough DOMs<br>to be consistent with either track or shower<br>signature                                                                                                                                                                                                                                                                                                                                                               |  |
|            | Level 4                       | BDT to remove atmospheric muons<br>(6 variables)<br>• Charge measured by PMTs (3 vars.)<br>• Simple vertex estimator<br>• Event speed simulator<br>• Calculation of event shape                                                                                                         | <ul> <li>Straight Cuts</li> <li>Number of photoelectrons deposited in largest cluster of hits</li> <li>Event vertex in fiducial volume (contained)</li> <li>No more than 5 p.e. in veto region total</li> <li>No more than 2 p.e. in veto region consistent with speed-of-light travel from hit to vertex</li> <li>Minimum number of non-isolated hits</li> <li>Space-time interval between 1<sup>st</sup> and 4<sup>th</sup> hits consistent with v s c.</li> </ul> |  |
|            | Level 5                       | Another BDT to remove atmospheric muons<br>(6 variables)<br>• Time to accumulate charge<br>• Vertex estimator<br>• Center-of-gravity information (2 var.)<br>• Causal hit identifier<br>• Zenith angle estimation                                                                       | BDT<br>(11 variables)<br>• Charge, time, and location of hit DOMs<br>(multiple variables)<br>• Reconstructed zenith angle & event<br>speed using fast construction                                                                                                                                                                                                                                                                                                   |  |
|            | Level 6                       | Straight outs <ul> <li>Inconsistent with intrinsic PMT noise</li> <li>Spatially compact</li> <li>Require likelihood-based vertex estimator to be well contained in DeepCore fiducial volume</li> <li>Reject events with hits along "contidors" in surrounding IceCube volume</li> </ul> | Straight cuts <ul> <li>Events with reconstructed paths through corridor region</li> <li>Starting &amp; stopping position in or near DeepCore (contain)</li> </ul>                                                                                                                                                                                                                                                                                                    |  |
|            | Level 7                       | Reconstruction (better & more accurate than fast reconstruction information above) & reconstructed energy must be 5.6-56 GeV                                                                                                                                                            | Reconstruction & no cuts on L7 ?                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |



## Tau Appearance and PMNS Unitarity

- 3-yr DeepCore result competitive with 15-yr Super-K measurement
  - Analysis improvements and additional data will improve precision
- IceCube Upgrade will achieve ±7% in 3 years
  - ~10% precision needed for real tests of unitarity of PMNS mixing matrix



## Next Step: the IceCube Upgrade

• Seven new strings of multi-PMT mDOMs in the DeepCore region



## $\rightarrow$ soon ORCA with 110 highly instrumented

# ORCA will consist of one dense KM3NeT Building Block:

115 detection lines **Total:** 64k \* 3" PMTs

|                      | ORCA      | ARCA        |
|----------------------|-----------|-------------|
| String spacing       | 23 m      | 90 m        |
| Vertical spacing     | 9 m       | 36 m        |
| Depth                | 2470 m    | 3500 m      |
| Instrumented<br>mass | 1x 8 Mton | 2x 0.6 Gton |



Why the precision measurement of another matrix?

new insights: leptonic CP connection to baryogenesis, origin of flavor,...

proton decay, supernova, dark matter search...

discover new physics: high energy scale and a hierarchy problem

what is the alternative?

## neutrinos probe BSM physics just like LHC



 $m\mathbf{n} = 0 \rightarrow new symmetry$ 

m $\mathbf{n}$  0  $\rightarrow$  new degrees of freedom beyond the SM

#### $m\mathbf{n}$ small $\rightarrow$ new high mass scale



$$m_f$$
(charged) ~  $Yv$ ,  $m_{\nu} \sim Y \frac{v^2}{\Lambda}$ 

BSM with large scale L naturally accommodates small neutrino masses

## discover new physics: go and look for it

double-beta decay: lepton number violation EXO, GERDA, SNO+, MAJORANA, ... NEXT...



absolute neutrino mass: KATRIN, Project 8, Holmium, ...