The History of Atmospheric Neutrino Oscillations And Its Own History

John M. LoSecco Physics Department University of Notre Dame du Lac

Abstract From the start (1983-85) IMB found too few v_{μ} . We looked for hardware or simulation deficiencies. Stopping cosmic ray muons were as expected. Searches for physics causes included oscillations tests in 1985. We published evidence of the deficit in 1986 and sought confirmation. Our evidence was confirmed in 1988.

Problems – IMB has too few muon signals

Author	When	Expected	l Observed	d	<u>0-1µs</u>	Extensive	studies	
Cortez & Foster PhD's	9/83	33±2%	22±4%	GLOBAL .	TRIGGER FINE	₂ stopping cosmic		
Schumard PhD	84	35±1%	26±4%			muons co	onfirmed	
Blewitt PhD	10/85	$34 \pm 1\%$	26±2%			correct res	sponse of	
LoSecco (LL) $\frac{v_e}{v_e}$	2/86	0.64	1.3	PM		detector to	muons.	
Phys. Rev. Let.	6/86	34±1%	26±3%			Multiple	neutrino	
Haines PhD & SWOGU/ICOBAN Toyama, Japan	86	34±1%	26±3%		ANTROL SNIFT EDISTER I bit ANALOG		sources	
Kamiokande does not too many \mathbb{R} inders were studied.								
Source Date Expos	ure Event	s M type	Event Rate	Expected				
kt-yı	S	Obs/MC	per kt-yr	Event Rate				
5'th WGU 1984 0.48	5 80	Agreed	165	Agreed	_			
Arisaka Thesis 1985 0.66	1 84	1.03	127	129				
6'th WGU 1985 0.84	0 99	1.13	118	111				
Kajita Thesis19861.11	133	1.19	120	108].			

IMB explored v oscillations via Up/Down comparisons and L/E in Phys. Rev. Lett. 54, 2299 (1985) and ICRC 1985

Management – of IMB *Information Tightly Controlled*

- Information tightly controlled ... Why? recognition? 12/11/80 in the results we will be getting. We would like to avoid things like the Alternating Current effect and the High Why Anomaly. (3) Any preprints, talks, or other material intended for publications or distribution, which contains discussion of, or substantial reference to, our detector or its techniques
- should be checked with all collaboration members before being distributed.
- Senior members had very strong control. Careers could be ruined.
- I had been fired from my first post doc job (E310) since I was skeptical of the high Y anomaly.
- Senior members had been involved in recent, very public mistakes.
- Reines *et al.* had discovered neutrino oscillations in 1980. $\bar{v}_{e}D$ NC/CC at SRP Phys. Rev. Lett. 45, 1307 (1980) 4/21/80 ROUGH DRAFT

To: DOE

IMB COLLABORATION

INCREASED FUNDING RATE FOR PROTON DECAY-NEUTRINO SUBJECT: OSCILLATION EXPERIMENT.

The recent discovery of neutrino oscillations⁽¹⁾ has

vast implications for particle physics and cosmology. It is

- Proton decay was the highest priority.
- If it were known that we did not understand our detector response it would jeopardize our discovery of proton decay.
- Neutrino oscillations limits were OK. No hints of a v_{μ} problem could be approved or shown.
- Secrecy had one good consequence; one maintained good records to keep *history* right.

studies of nsive cosmic ray Ing ns confirmed the ect response of the tor to muons. iple neutrino intion sources and

Other Indications

August 27, 1985, while at the Aspen Underground Physics meeting with Y. Suzuki I realized Kamiokande also had a "*T2 problem*". They had not noticed it.

has ats Kamioka Compatible with our own.

I could not discuss IMB's results at the time due to secrecy rules. I reported this observation at the IMB collaboration meeting, November 14-16 1985.

February 1986 – Lake Louise IMB has $v_e/v_\mu \approx 1.3$ expect 0.64

Most proton decay detectors have reported a neutrino flux as measured in their detectors $^{4),5),8),12)$. In general the agreement with expected fluxes is good. Both the Kamioka detector¹⁸⁾ and the Nusex detector⁴⁾ can distinguish ν_e from ν_μ by shower development. They quote a ν_e/ν_μ flux ratio of 0.36 ± 0.08 and 0.28 ± 0.11 respectively. These are lower than the expected value⁶⁾ of 0.64. The IMB group has studied the fraction of their contained events resulting in a muon decay⁸⁾. The 26% observed can be converted to a ν_e/ν_μ ratio with a number of assumptions about muon capture in water. If 40% of the ν_{μ} interactions do *not* result in a muon decay signal the observed value corresponds to $\nu_e/\nu_\mu \approx 1.3$. This talk was a review based on public information such as Geof Blewitt's Caltech PhD thesis.

June 1986 – IMB Phys Rev Lett

simulation predicts that 34%+/-l% of the events should have an identified muon decay while our data has 26%+/-2%. This 822.2 discrepancy could be a statistical fluctuation or a systematic error due to (i) an incorrect ratio of muon v'sto electron v's in the atmospheric fluxes, or (ii) an incorrect estimate of the efficiency for our observing a

muon decay, or (iii) some other physics. Draft of Apr 10, 86 and May 15, 86: note Binomial errors More details in Haines UC Irvine PhD thesis This publication created the opportunity for discussion of the v_{μ} rate outside the collaboration since once the paper was released secrecy was lifted.

Seek Confirmation from Kamiokande

After the v'86 meeting in Sendai I stopped in Tokyo to emphasize our anomaly and to point out problems in the Kamiokande data. At the time Kamiokande was reporting a 1.6σ excess of M(uon) type events (with M/S analysis), but their data also showed a 2.4σ deficiency of muon decays which they failed to note. I suspected this would confirm our 3.5σ muon deficit. No confirmation was provided at that time.

Contact Information:

Physics Department University of Notre Dame du Lac Notre Dame, Indiana 46556-5670, USA Phone: +1 (574) 631 6044 Email: losecco@nd.edu

Problog

tectors. The IMB experiment has not reported data in which electron-like and muon-like events are distinguished, but it has reported [10] that the fraction of observed events manifesting muon decays is $26 \pm 3\%$, while their Monte Carlo simulations predict that $34 \pm 1\%$ of all events should exhibit muon decays. The preliminary result on the v_e/v_μ ratio from Also: M. Takita, ICRR Tokyo, PhD Thesis 1989

2005 Referee Report misleading citation

In citing previous work near the end of the introduction the authors have overlooked the 1986 IMB-1 paper on this subject. The IMB-1 paper was very similar to the current work in that it compared detailed atmospheric neutrino event rate estimates with observations and "observed significantly smaller nu-mu to nu-e flux ratios of atmospheric neutrinos" and was the first to do so.

*** RESPONSE: We felt it was beyond the scope of this paper to provide a full historical documentation. We chose recent publications that most clearly addressed the same measurements. The diligent reader can trace back to earlier work if interested. We also note that we have many IMB collaborators as authors of this paper, and they have checked off on this approach.

In 2010 – The discovery date is given as 1986

Kamiokande²²⁾ observed in 1986 that the fraction of

neutrino interactions. However, the IMB^{21} and events accompanied with a muon decay signal was less than expected. One of the possibilities for these data was a deficit of ν_{μ} events. However, these data **Kamiokande*²²) *makes no mention of muon rate* T. Kajita Proc.Jpn.Acad. Ser.B 86, 303 (2010).

In 2015 – The discovery date is given as 1988?

Research accomplishments:

I have been working in Kamiokande and Super-Kamiokande experiments. In particular, I have been studying atmospheric neutrinos and neutrino oscillations. In 1988, we discovered the atmospheric muon-neutrino deficit (this was called atmospheric neutrino anomaly), which was confirmed to be due to neutrino oscillations 10 years later. In this study we showed that the nm / ne ratio observed in Kamiokande was only about 60% of the predicted ratio. Subsequently, in 1994,

January 1988 Confirmation by Kamiokande–Thanks