Neutrinos in Cosmology

Jim Rich

SPP-IRFU
CEA-Saclay
91191 Gif-sur-Yvette
james.rich@cea.fr

November, 2015
History of the universe:
Density and temperature decrease with time

today: $T = 0.2\text{meV}$
History of the universe:
Interesting things happen!

nucleosynthesis: $T=60\text{keV}$
recombination: $T=0.25\text{eV}$

radiation domination
matter domination
vaccum domination
today: $T=0.2\text{meV}$
The role of neutrinos in cosmology: summary

Early Universe: effects of number of neutrino species \((\nu_e, \nu_\mu, \nu_\tau \ldots)\)
- Each species: one black-body spectra in the primordial soup
 Effect on Nucleosynthesis \(\Rightarrow N_\nu \sim 3\)
 Effect on Recombination \(\Rightarrow N_\nu \sim 3\)
The role of neutrinos in cosmology: summary

Early Universe: effects of number of neutrino species ($\nu_e, \nu_\mu, \nu_\tau, \ldots$)
- Each species: one black-body spectra in the primordial soup
 - Effect on Nucleosynthesis $\Rightarrow N_\nu \sim 3$
 - Effect on Recombination $\Rightarrow N_\nu \sim 3$

Late Universe: effects of neutrino mass
- m_ν “complicates” late-time expansion and structure formation
 - No complications seen $\Rightarrow m_\nu < 0.2 - 0.1$ eV
The role of neutrinos in cosmology: summary

Early Universe: effects of number of neutrino species ($\nu_e, \nu_\mu, \nu_\tau \ldots$)
- Each species: one black-body spectra in the primordial soup
 - Effect on Nucleosynthesis $\Rightarrow N_\nu \sim 3$
 - Effect on Recombination $\Rightarrow N_\nu \sim 3$

Late Universe: effects of neutrino mass
- m_ν “complicates” late-time expansion and structure formation
 - No complications seen $\Rightarrow m_\nu < 0.2 - 0.1\,\text{eV}$
- A dark matter candidate that is easy to kill:
 - $m_\nu \sim 15\,\text{eV}$ (hot dark matter)
- An intriguing unorthodox dark matter candidate:
 - $m_\nu \sim 5\,\text{keV}$ (non-thermal relic, warm dark matter)
The role of neutrinos in cosmology: summary

Early Universe: effects of number of neutrino species ($\nu_e, \nu_\mu, \nu_\tau, \ldots$)

- Each species: one black-body spectra in the primordial soup
 - Effect on Nucleosynthesis $\Rightarrow N_\nu \sim 3$
 - Effect on Recombination $\Rightarrow N_\nu \sim 3$

Late Universe: effects of neutrino mass

- m_ν “complicates” late-time expansion and structure formation
 - No complications seen $\Rightarrow m_\nu < 0.2 - 0.1$ eV

- A dark matter candidate that is easy to kill:
 - $m_\nu \sim 15$ eV (hot dark matter)

- An intriguing unorthodox dark matter candidate:
 - $m_\nu \sim 5$ keV (non-thermal relic, warm dark matter)

- A super-challenge: detect cosmological neutrinos!
Early universe: Neutrinos = 3 more black bodies

Same as photons except

- Decouple much earlier ($T \sim$ MeV instead of 0.25eV)
 [Only weak interactions]
- fermions instead of bosons
 [Slightly different thermal distribution]
- only left-handed ν and right-handed $\bar{\nu}$ reach thermal equilibrium
 [Wrong-helicity states not expected to be present.]
Early universe: Neutrinos $= 3$ more black bodies

Same as photons except

- Decouple much earlier ($T \sim \text{MeV}$ instead of 0.25eV)
 [Only weak interactions]
- Fermions instead of bosons
 [Slightly different thermal distribution]
- Only left-handed ν and right-handed $\bar{\nu}$ reach thermal equilibrium
 [Wrong-helicity states not expected to be present.]

Gold mine of questions for exams:
1. Show that $T_\nu = (4/11)^{1/3} T_\gamma$ (as long as $T \gg m_\nu$)
2. Show that $n_\nu = (3/11)n_\gamma \sim 110\text{cm}^{-3}$ (each species)
What can a neutrino do in the early universe

They have only
- weak interactions
- gravitational interactions.

Both interactions play essential roles.
ν_e weak interactions

\Rightarrow initial conditions for nucleosynthesis

neutron-proton ratio vs. temperature:

$\nu_e n \leftrightarrow e^- p$

$n \rightarrow p e^- \bar{\nu}_e$

nucleosynthesis ($T = 60$ keV)

(number of neutrons reduced by decay)
ν_e weak interactions
\Rightarrow initial conditions for nucleosynthesis

neutron-proton ratio vs. temperature:

\begin{itemize}
 \item thermal equilibrium via $\nu_e n \leftrightarrow e^- p$
 \item $n \rightarrow pe^- \bar{\nu}_e$
\end{itemize}

nucleosynthesis ($T = 60\text{keV}$) (number of neutrons reduced by decay)
ν_e, ν_μ, ν_τ gravitational interactions

expansion rate (squared) proportional to density

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} \left(\rho_{\text{matter}} + \rho_\gamma + \rho_\nu + \ldots \right)$$

(Friedman)

\Rightarrow In radiation epoch expansion rate (squared) proportional to number of black-body spectra.
ν_e, ν_μ, ν_τ gravitational interactions

. Expansion rate in Early universe $\sim (N_\gamma + N_\nu)$ ($N_\gamma = 1$).

$N_\nu > 3 \Rightarrow$ temperature drops faster
- Less time for neutron decay \Rightarrow more helium than the observed 25%
- Recombination faster \Rightarrow sharper CMB image
1977: Observed helium abundance $\Rightarrow N_\nu < 5$

COSMOLOGICAL LIMITS TO THE NUMBER OF MASSIVE LEPTONS

Gary STEIGMAN
National Radio Astronomy Observatory¹ and Yale University², USA

David N. SCHRAMM
University of Chicago, Enrico Fermi Institute (LASR), 933 E 56th, Chicago, Ill. 60637, USA

James E. GUNN
University of Chicago and California Institute of Technology², USA

Received 29 November 1976

If massive leptons exist, their associated neutrinos would have been copiously produced in the early stages of the hot, big bang cosmology. These neutrinos would have contributed to the total energy density and would have had the effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to produce a higher abundance of \(^4\)He. It is shown that observational limits to the primordial abundance of \(^4\)He lead to the constraint that the total number of types of heavy lepton must be less than or equal to 5.

2015: \(1.8 < N_\nu < 4.5\) (95\%CL)

2015: $\text{CMB} \Rightarrow N_\nu = 3$

Planck image of our “last-scattering surface”:

The image is blurred because photons random-walk in the 100,000yr before recombination. Increasing the expansion rate, reduces the time for random walking, and makes the image sharper.
Photon random walk on last-scattering surface

Diffusion distance proportional to geometric mean of photon mean-free-path and $ct_{walk} \sim 1/\text{expansion rate}$.
Planck damping for $\ell > 1000 \Rightarrow N_\nu < 4$

$N_\nu = 2.99 \pm 0.20$
(CMB only)

$N_\nu < 4$ at $\sim 3\sigma$

⇒ Any sterile neutrino must not have thermalized.
Late universe: massive neutrinos become non-relativistic $kT \sim m_\nu c^2$

Neutrino oscillation experiments \Rightarrow at least one neutrino with $m_\nu > 0.05\text{eV}$!

m_ν modifies density \Rightarrow modified expansion rate (Friedman eqn.) \Rightarrow modified distance-redshift relation
Limits on neutrino mass

When $T \sim m_\nu$:

- Energy per neutrino becomes constant ($= m_\nu$)
 \Rightarrow modified the expansion rate
 \Rightarrow modified distance-redshift relationship
 $\Rightarrow m_\nu < 0.23\text{eV}$ (Planck plus BAO)

- Start to contribute to structure formation
 Modify predicted inhomogeneities
 $\Rightarrow m_\nu < 0.12\text{eV}$ (Planck plus Lyα forest)

Palanque-Delabrouille et al [2015]

Question: If it turns out that $m_\nu > 0.2\text{eV}$, how must we modify the cosmological model to recover agreement? (e.g. time-varying dark energy).
Excluded: $m_\nu \sim 15\text{eV}$: hot dark matter

$m_\nu \sim 15\text{eV}$ gives the right matter density (for 110cm^{-3}) but causes problems for CMB spectrum and structure formation.

m_ν modifies expansion rate before recombination \Rightarrow CMB spectrum modified

Neutrinos “free stream” at $\nu = c$ until $T = 15\text{eV}$ \Rightarrow inhomogeneities on galactic scales removed.
Neutrino free-streaming destroys short wavelength perturbations

Neutrino perturbation destroyed if $ct > \lambda$ where t is the time between neutrino decoupling and $T = m_\nu$.

- $m_\nu = 15\text{eV} \Rightarrow$ galaxy-size perturbations destroyed
- $m_\nu = 4\text{keV} \Rightarrow$ small-galaxy-size perturbations destroyed
$m_\nu \sim \text{keV}: \text{warm dark matter}$

Matter density too high if $n_\nu = 100 \text{cm}^{-3} \Rightarrow$ must not have been in thermal equilibrium in early universe.
Possibility: sterile neutrino produced by oscillations

Neutrinos “free stream” at $\nu = c$ until $T = 4\text{keV} \Rightarrow$ inhomogeneities on scales of small galaxies removed. This is good because few small galaxies are seen!
$m_\nu \sim$ keV: warm dark matter

Matter density too high if $n_\nu = 100 cm^{-3} \Rightarrow$ must not have been in thermal equilibrium in early universe.
Possibility: sterile neutrino produced by oscillations

Neutrinos “free stream” at $\nu = c$ until $T = 4$keV \Rightarrow inhomogeneities on scales of small galaxies removed.
This is good because few small galaxies are seen!
\Rightarrow fine-tuning once again: neutrino mass just big enough allow for the existence of galaxies!
The ultimate challenge: detection of ν_{cosmo}

Charged current interactions only on radioactive targets. Tritium β-decay ($T_{1/2} = 12$yr):

$$^{3}H \rightarrow ^{3}He \; e^{-} \; \bar{\nu}_{e} \quad E_{e}(\text{max}) = M_{He} - M_{H} - m_{\nu} \sim 17\text{keV}$$

Capture of cosmological neutrinos on tritium:

$$\nu^{3}H \rightarrow ^{3}He \; e^{-} \quad E_{e} = M_{He} - M_{H} + m_{\nu}$$

Capture electrons separated from β electrons by $2m_{\nu}$ (S. Weinberg)

100g tritium $\Rightarrow \sim 10$ captures per year (and $\sim 3 \times 10^{24}$ decays!)
Tritium β-decay plus capture spectrum

Long et al. arXiv:1405:7654:

Ptolomy project: arXiv:1307.4738
Neutrinos in cosmology: conclusion

- Neutrinos have an essential role in cosmology
 Nucleosynthesis
 Maybe dark matter....
- Cosmological observations consistent with three light neutrinos.
- Direct observation somewhat difficult